Внутренняя мембрана митохондрий не-проницаема для протонов: сквозь нее не могут проникнуть ионы водорода. А значит, она непроницаема и для гидроксильных ионов, ОН~, которые в противном случае могли бы выступать в качестве носителей ионов Н+, забирая их с собой в виде Н2О и возвращая в виде ОН-. На самом же деле мембрана полностью непроницаема для ионов: ни один ион, будь он отрицательно или положительно заряжен, не может проникнуть сквозь нее в ощутимых количествах путем пассивной диффузии. Все распределение ионов между митохондриями и окружающим цитозолем четко регулируется с помощью специальных во-рот или насосов.
Имеется такой насос, вернее, два типа насосов, и для протонов. Оба предназначены для того, чтобы насильственно перекачивать протоны из митохондрий при условии снабжения энергией. Оба они обратимы, иными словами, могут вырабатывать энергию за счет внутреннего потока протонов. Но их энергетическое снабжение различно: один насос работает за счет электронов, другой — за счет АТФ. Короче говоря, секрет окфоса заключается в том, что поток электронов и синтез АТФ связаны между собой протондвижущей силой.Рассмотрим сначала насос, работающий за счет АТФ. При расщеплении одной молекулы АТФ на АДФ и неорганический фосфат насос выводит п протонов из тела митохондрии. Он может продолжать работать таким образом до тех пор, пока способен превосходить потенциал протонов образующийся снаружи. Когда же этот потенциал становится равным мощности насоса, последний перестает работать, точно так же, как это происходит с электрическим насосом, который способен накачивать воду только на определенный уровень в зависимости от мощности электродвигателя. Мощность насоса, работающего под действием' АТФ, нам известна: она составляет примерно 14 ккал/г-моль расщепляющейся молекулы АТФ. Поэтому максимальный уровень, на который он может поднять протоны, равен приблизительно 14/я ккал/протон-эквивалент.
По такому же принципу работает и электрон-управляемый насос, если не считать того, что он снабжается энергией, высвобождаемой парой электронов, падающих вниз через разность потенциалов. Если эта разность составляет 300 мВ, то получаемая энергия будет равняться 14 ккал/пара электрон-эквивалент. Такой насос, как и АТФ-управляемый насос, перестанет работать, когда потенциал протонов достигнет 14/п ккал/протон-эквивалент, где п — количество протонов, которое насос перемещает на каждую пару падающих электронов. Оказывается, что значение п для двух типов насосов одинаково; в противном случае сопряженная система, описанная здесь, не смогла бы работать.
Если теперь нам известно, что два насоса работают совместно против одного и того же потенциала протонов и один из них оказывается чуть сильнее другого, то более мощный насос поднимет потенциал протонов выше предельного уровня более слабого насоса, который, если он обратим, начнет работать в обратном направлении. То же происходит с двумя электрическими насосами, перекачивающими воду вверх в один и тот же резервуар: если один из них сильнее, он поднимет воду на уровень, достаточный для того, чтобы направить поток обратно через более слабый насос и заставить его работать в качестве генератора. В обратимой системе такого типа количество электричества, вырабатываемого вторым насосом, будет равно количеству электричества, потребляемого первым насосом, за исключением ничтожно малых потерь из-за несовершенства системы. Таким образом электрическая энергия передается с помощью гидравлического преобразователя.Аналогичная ситуация наблюдается в митохондриальной мембране, только уже с другими видами насосов и энергии. Чаще всего более мощным из двух митохондриальных насосов оказывается тот, который приводится в действие электронами, ибо он все время снабжается топливом в процессе метаболизма, тогда как АТФ постоянно потребляется для выполнения различных видов работы в клетке. Вот почему АТФ-управляемые насосы работают в обратном направлении, создавая АТФ с помощью протондвижущей силы, которая снабжается потоком электронов.
Обычно эта система не работает в обратном направлении, так как для этого не существует отдельного источника АТФ Но может случиться, что один из электрон управляемых насосов окажется более мощным, чем другие. Как мы помним, в дыхательной цепи имеются три окфос-блока, каждый из которых связан с разными носителями электронов, а следовательно, с разными насосами протонов. Самый мощный из них тот, что находится на участке III. Его разность потенциалов близка к 500 мВ, поэтому он в основном необратим, тогда как насосы на участках I и II легко обратимы; их разность потенциалов около 300 мВ. Благодаря дополнительному падению до участка III электроны, поступающие в систему на уровнях с или Ь — Пытаясь представить себе эту систему, вы должны понять, что митохондриальные протонные насосы не секретируют просто кислоту, как это делает, например, протонный насос слизистой, выстилающей желудок. Дело в том, что вытесняемые протоны не сопровождаются отрицательно заряженными ионами и не обмениваются на другие положительно заряженные ионы. Как только протоны выталкиваются наружу, нарушается электрический баланс за счет потери положительных зарядов внутри митохондрий, а по всей митохондриальной мембране образуется электрический потенциал, положительный снаружи. По мере увеличения потенциала становится все труднее выталкивать протоны наружу против этого потенциала — вспомним, что, согласно закону Кулона, одноименные заряды отталкиваются друг от друга. В конце концов насос не выдержит перегрузки и остановится, когда работа, необходимая для проталкивания дополнительного положительного заряда против электрического потенциала, сравняется с мощностью насоса. Другими словами, протонный потенциал в этой системе выражается в основном в виде разности электрического потенциала через мембрану. Существует небольшое различие в кислотности между внутренней и внешней частями митохондрий, но оно несущественно.
Мы можем рассчитать мембранный потенциал митохондрии, зная, что мошность насоса составляет 14/п ккал/протон эквивалент (58 600/п Дж/протон-эквивалент) или
58 600 96 500 х га ~ ' / •
По Митчеллу, п — 2; в таком случае потенциал мембраны равен 300 мВ. Но не все ученые разделяют точку зрения Митчелла. Некоторые утверждают, что п — 3 или 4; в этих случаях потенциал будет составлять 200 или 150 мВ соответственно. Другие считают, что величина мембранного потенциала еще ниже, и не потому, что они, не согласны со стехиометрией Митчелла, а потому, что, по их мнению, протонный потенциал частично проявляется в конформационных изменениях мембраны. К сожалению, у нас нет необходимого вольтметра, позволяющего решить этот вопрос. Да и зрение наше не настолько острое, чтобы можно было обнаружить, изменяются ли очертания и формы молекул при энергизации микросфер.Что же мы знаем о самих насосах? Увы, очень мало. Известно несколько АТФ-управляемых протонных насосов. Помните, один из них находится в мембране эндосом и лизосом? Что же касается молекулярного механизма, связывающего перенос протонов с гидролизом АТФ, то ни для одного из насосов он еще не открыт. Известно только, что митохондриальный АТФ-управляемый протонный насос находится в маленьких узелках, выступающих с внутренней стороны мембраны; их можно выборочно разрушить веществом, называемым олигомицином. Как указывает само название, олигомицин получают из плесени . В нашем путешествии мы встретимся и с другими «мицинами». Они являются поистине бесценными помощниками биохимиков и молекулярных биологов, помогая им расшифровать некоторые наиболее сложные биологические механизмы. Интересно, что все эти вещества в некотором роде представляют собой ответвления от пенициллина. До открытия последнего немногие ученые проявляли интерес к плесени. Но после того, как стало известно, что плесневый грибок производит вещество (вполне понятно названное пенициллином), способное остановить развитие некоторых патогенных микробов, начался широкий поиск других плесневых продуктов, обладающих свойствами антибиотиков. С этой целью по всему миру отбирали сотни тысяч линий плесени и получали большой «урожай» активных веществ. Некоторые из них, например стрептомицин, были использованы в клинике. Но от большинства других пришлось отказаться, так как они оказались крайне токсичными для организма человека. Эти вещества подавляют ряд важных биологических процессов, в частности транскрипцию ДНК, синтез белка или окислительное фосфорилирование. В биохимии нередко о работе какого-либо механизма можно судить по тому, как он блокируется ингибиторами. Вот почему эти вещества, будучи непригодными для лечения людей, оказались бесценными для науки. Этот факт, как, впрочем, многие другие в истории науки, лишний раз свидетельствует о том, сколь непредсказуемы открытия и сколь недальновидны те бюрократы, к сожалению, все чаще встречающиеся в последнее время, которые ограничивают деятельность ученых строго определенными программами.
Возвращаясь к электрон-управляемым протонным насосам, мы должны уяснить для себя их место в молекулярной архитектуре самих микросфер, поскольку их работа зависит от обязательного сопряжения между переносом электронов и выведением протонов. Митчелл высказал простую, но любопытную гипотезу относительно такого сопряжения: он предположил, что электроны поступают в окфос - блоки в в1 ае атомов водорода, поставляемых из митохондрий, а покидают окфос - блоки «обнаженными», сбросив протоны снаружи. Согласно модели Митчелла, микросферы образованы из перемежающихся водород - и электроннесущих сегментов, которые образуют петли в толще мембраны. Если это действительно так, вопрос ясен. Но, спрашивается, какого рода ограничения должна налагать молекулярная анатомия микросфер на поток электронов? Ограничение заключается в том, что электроны проталкиваются по синусоидальному пути, который ведет их попеременно от одной стороны мембраны к другой, причем в одном направлении вместе с протонами, а в другом — без них. На самом деле, механизм гораздо сложнее, чем следует из нашего упрощенного описания; он вклю-чает в себя тонкие физико-химические и конформационные изменения, связанные с прохождением носителей от окисленного состояния к восстановленному. Добавьте все эти требования к перечисленным выше, и перед вами будет весьма сложный, четко работающий механизм. Не забывай-те, что весь он умещается в крошечной «биочастице» толщиной в 0,3-миллионную и шириной в одну миллионную часть дюйма!
Из-за внутренних структурных ограничений митохондриальные окфос-блоки не расходуют энергию зря. Поток электронов и синтез АТФ по необходимости сопряжены; это означает, что скорость потока электронов (а также субстрата и потребления кислорода) автоматически доводится до скорости потребления АТФ. В состоянии покоя используется мало АТФ и, следовательно, потребление пищи и дыхание находятся на низком уровне. Но как только появляется внезапная потребность в АТФ, например у спортсмена, начинающего забег, электронный поток тут же многократно увеличивается, вызывая одновременно пропорциональное увеличение катаболического окисления и потребления кислорода. Этот регуляторный механизм называется дыхательным контролем.
Дыхательный контроль зависит от силы связывания, которая в свою очередь определяется непроницаемостью мембраны для протонов. Любое вещество, способное транспортировать протоны через липидный бислой мембраны (протонный ионофор), тут же вызовет разрушение протонного потенциала и, таким образом, приведет к раскрытию системы. Известны многие такие разъединяющие вещества. Их прототипом служит 2,4-динитрофенол.
Другим способом снятия заряда с мембранного потенциала является внесение в систему положительно заряженного иона, способного проникать через мембрану в митохондрии. Но, для того чтобы это произошло, в мембране должен быть подходящий носитель. В природе существует носитель для ионов кальция, поэтому митохондрии стремятся предохранить свое окружение от ионов кальция. Это важный регуляторный механизм (см. гл. 12). Путь для поступления ионов калия можно создать искусственно, внося валиномицин, плесневый токсин, обладающий свойствами ионофора калия. Заметим, что при этом работа все же производится. Электронный поток поддерживает активный транспорт добавленного катиона внутрь митохондрий в обмен на транспорт протонов наружу.
В заключение необходимо указать, что окфос-блоки субстратного уровня, например такие, какие имеются при гликолизе или в цикле Кребса, работают не за счет протондвижущей силы. Они относятся к чисто химическим преобразователям. Длительное время ученые представляли механизм фосфорилирования на субстратном уровне как связанное с мембраной фосфорилирование на уровне медиаторов, которое имеется в митохондриях, ибо большинство из них искали несуществующие химические посредники.






Термин «митохондрия» восходит к греческому слову mitos, что означает «нить», и chandros — зерно. В нем нашел отражение внешний нитчатый облик митохондрий в некоторых типах клеток. Однако в других клетках митохондрии могут иметь форму прутка, яйца илц шара. Иногда несколько митохондрий образуют причудливые сцепления, которые, как утверждают, могут включать целую митохондриальную популяцию клетки, превращаясь в необычную свернутую спиралью открытую структуру, напоминающую скульптуры Генри Мура. Размеры митохондрий колеблются, но имеют тенденцию к увеличению по мере увеличения ' размеров клетки и составляют 1 мкм и выше. Увеличьте эту «фигуру» в миллион раз, и вы приблизите ее размеры к нашим собственным. В случае удачи, особенно если мы правильно выберем объект исследования (например, в мышечной ткани крыльев синей мясной мухи имеются особенно крупные митохондрии), можно даже втиснуться в них. Однако не следует и думать, что мы сможем проникнуть внутрь целыми и невредимыми. Нам будет необходимо прибегнуть к вивисекции.
Снаружи митохондрия кажется заключенной в тонкую гладкую полупрозрачную оболочку. Через эту внешнюю мембрану просматривается внутренняя — ярко-розовая, испещренная многочисленными глубокими бороздками. Если смотреть изнутри, то структуры, соответствующие этим бороздкам, оказываются гребнями, или кристами (лат. ст/а — гребень), которые образуют ряд непрерывных перегородок с внутренней стороны митохондриального тела. В действительности кристы представляют собой не что иное, как выросты непрерывной, полностью замкнутой внутренней мембраны. Мы можем в этом удостовериться, если прорвем внешнюю мембрану и дадим митохондрии возможность впитать воду, нарушив в некоторой степени осмотический баланс. Она довольно сильно набухнет, но при этом ее внутренняя мембрана останется целой и не развернется. Образование крист (а в некоторых типах клеток они заменены трубчатыми выростами) — это приспособление, позволяющее увеличивать поверхность мембраны без увеличения объема тела. В важности подобного увеличения мы убедимся, когда узнаем, что внутренняя мембрана — истинное сердце силовой установки клетки, ее подлинный генератор энергии; она содержит дыхательную цепь и связанные с ней системы фосфорилирования.
С точки зрения эволюции принято считать, что внутренняя мембрана произошла из плазматической мембраны какого-то предполагаемого древнего бактериального эндосимбионта. Внешняя же мембрана, вероятно, произошла из системы вакуолей древнего предка хозяина-фагоцита. И в самом деле, она обладет некоторым сходством с эндоплазматическим ретикулумом, с которым ее объединяет, например, наличие особого пигмента, цитохрома Ь5.
Хотя наше путешествие в основном касается животных клеток, оно будет не полным, если мы, пусть не надолго, не заглянем в мир растений. Растения относятся к общей группе аутотрофов — буквально это значит «самопитающиеся организмы». Правильнее называть их литотрофами (греч. lithos — камень), но это менее распространенное название. Вместе с тем «пищевые продукты» аутотрофов и в самом деле полностью поступают из мира минералов в виде двуокиси углерода (С02), воды (Н20), нитрата (N05"), сульфата (S042") и подобных неорганических компонентов. В них содержатся необходимые элементы, но в совершенно «некалорийном» виде, не представляющем ценности с энергетической точки зрения. Аутотрофы нуждаются в дополнительном источнике энергии, так как не могут подобно гетеротрофам (органотрофам) черпать энергию из пищи.
В каком виде находится эта энергия? Есть несколько ответов на этот вопрoс, но они все сводятся к одному слову: электроны. То, что электроны необходимы для аутотрофного образа жизни, вытекает из природы их строительных блоков. Чтобы перевести С02, Н20, и другие вещества в углеводы, белки, липиды и другие биологические компоненты, необходим большой приток электронов — практически столько, сколько высвобождается при окислении этих составных частей у гетеротрофов. Что электроны должны иметься в достаточных количествах, можно пред-положить, исходя из наших знаний о гетеротрофах. Если какой-либо организм имеет как минимум один функциональный свободный окфос-блок, он может использовать электроны для выработки АТФ и полностью удовлетворить свою потребность в энергии.
Электроны должны поставляться на достаточно высоком энергетическом уровне. Что касается синтеза АТФ, эти требования варьируют и зависят от уровня, с которого электроны покидают окфос-блок. При этом необходимо только, чтобы они поступали на уровне, превышающем уровень их выхода по крайней мере на 300 мВ (если, как это обычно бывает, они поступают парами). Однако для восстановительного синтеза, при котором электроны чаще всего поступают на уровне, как минимум эквивалентном уровню НАДН, требование более строгое. Причина очевидна: это уровень, с которого большая часть запасаемых электронов падает вниз при катаболизме.
В примитивных системах аутотрофное восстановление происходит при участии НАДН, т. е. с тем же коферментом, что и катаболическое окисление. Гликолиз у животных также протекает по этому пути. Как мы видели в конце , окфос-блоки гликолитической цепи работают на уровне, близком к термодинамическому равновесию, поэтому даже сравнительно небольших изменений концентраций участвующих веществ достаточно, чтобы повлиять на направление потока электронов через блок и вызвать в клетке переключение гликолиза на глюконеогенез.
Волшебным компонентом этой единицы является хлорофилл — магнийсодержащее производное тетрапиррольного порфиринового кольца. Если магний заменить железом, то получится образование, которое является активным составляющим гемоглобина, цитохромов (в том числе дыхательных ферментов) и других гемопротеидов . Важность этой молекулы для успеха жизни на Земле трудно переоценить. Но вот что любопытно: по крайней мере у одного организма в наши дни тоже есть фотоэлектрическая единица, но содержит она каротин (химическое производное витамина А) — вещество, не имеющее никакого родства с хлорофиллом. Речь идет о пурпурной бактерии любящего морскую воду микроба из группы археобактерий, которые живут на поверхности испаряющихся солеварен. Хотя каротинсодержащие вещества не очень успешно улавливают солнечную энергию, им принадлежит ключевая роль в развитии фотокоммуникации. Родопсин , один из главных светочувствительных пигментов глаза — близкий родственник бактериородопсина, основного составляющего фотоэлектрического генератора в мембране .
Основная функция биологических фото-электрических единиц заключается в приеме электронов от низкоэнергетического донора, в подъеме их на более высокий энергетический уровень с помощью света и в отдаче соответствующему акцептору. Эта система может иметь несколько выходов энергии, но при любых условиях должна быть связана с окфосблоком, через который активизированные светом электроны могут падать на более низкий энергетический уровень; это связано с выработкой потенциала протонов, который снабжает энергией процесс сборки АТФ или выполнение любой другой работы. Такого рода комбинация фотоединиц с окфос-блоком способствует процессу фотофосфорилирования, который может быть цикличным или нецикличным в зависимости от того, возвращаются сошедшие на низкий уровень электроны в фотоединицу или переносятся к внешнему акцептору.Путем такой комбинации снабжение электронами восстановительных процессов биосинтеза может происходить либо непосредственно из фотоединицы, если ее активированный уровень достаточно высок, либо косвенно, после дополнительного повышения напряжения за счет окфос-блока, функционирующего в обратном направлении, как во второй форме хемолитотрофии. Что касается электронных доноров, то они относятся в основном к минеральному миру (фотолитотрофия). Но известны также случаи фотоорганотрофии. Они, возможно, представляют собой промежуточные формы между гетероиаутотрофией.
Сегодня наиболее примитивные комплексы, зависящие от хлорофилла, обнаруживаются в фотосинтетических пурпурных и зеленых серных бактериях.
Хлоропласты напоминают митохондрии по наличию двух окружающих мембран: наружной, которая, как предполагают, произошла из системы вакуолей предковых фагоцитов, и внутренней, которая, по-видимому, унаследована от плазматической мембраны древних эндосимбионтов — сине- зеленых водорослей. Они отличаются от митохондрий размером и цветом. Как правило, они намного крупнее митохондрий. Их размеры достигают нескольких микрон, и нам в ходе нашего путешествия не составило бы особого труда проникнуть внутрь хлоропластов, не будь они переполнены множеством мембран.
Эти мембраны, как и митохондрии, произошли из складок внутренней мембраны, но с тем важным отличием, что выпячивания отделились от мембраны и образовали мешочки в форме дисков. Мешочки получили название тилакоидов. Несколько тилакоидов образуют цилиндрическую структуру, названную граной. Каждый хлоропаст состоит из нескольких гран, часто связанных трубчатыми соединениями. Система внутренних мембран поддерживает фотосинтетический аппарат.
Этот механизм включает фосфорилирующую электронно-транспортную цепочку, граничащую сбоку с двумя фотоэлектрическими единицами. Цепочка напоминает митохондриальные микросферы. Она также состоит из ряда структурно связанных электронных носителей, включающих металлопротеиды (железо, медь), флавопротеиды, хиноны и цитохромы. Электроны, циркулирующие через микросферы, подчиняются тем же ограничениям, что и в митохондриях; они выкачивают протоны наружу, создавая протонный потенциал. Но «наружу» в тилакоидах на самом деле означает «внутрь», так как тилакоид представляет собой запечатанный мешочек в отличие от митохондриальной кристы, которая является открытой внутренней складкой. В результате создается впечатление,будто митохондрии и хлоропласты накачивают протоны в противоположных направлениях. Однако это не совсем так. В каждой из этих структур отрицательно заряженная сторона мембраны ориентирована к матриксу.
Единственной световод реакцией при фотосинтезе является двухступенчатое фотоэлектрическое преобразование, в процессе которого из воды экстрагируются электроны, а их потенциал поднимается почти до 1200 мВ. В результате такой реакции образуются НАДФН и АТФ. Их количества достаточно, чтобы поддерживать все аутотрофные биосинтетические механизмы, причем справляются они со своей задачей в отсутствие света. Именно так это происходит, например, у нефотосинтетических хемолитотрофных организмов.
Прежде, чем покинуть хлоропласты, нам следует хотя бы мельком взглянуть на наиболее известную из темновых реакций, а именно на фиксацию ССЬ. Проследить ее удалось исключительно с помощью радиоизотопной техники, использованной в сочетании с хроматографическим разделением . Осветив листья в присутствии радиоактивного 14С02 в течение с каждым разом укорачивающихся промежутков времени (всего каких-нибудь несколько секунд), а затем выделив из них и разделив меченые компоненты, ученые смогли установить, что самым ранним продуктом фиксации СО2 является фосфоглицериновая кислота. Благодаря этой разгадке начался поиск соответствующих реакций, и вскоре они были найдены. Это удивительный процесс, в котором дифосфорилированный пятиуглеродный сахар, рибулозо-1,5-дифосфат, вступает в реакцию с СО2 и водой и дает в результате реакции две молекулы фосфоглицериновой кислоты. Фермент, катализирующий эту реакцию, связан с тилакоидной мембраной.
С фосфоглицериновой кислотой мы уже встречались при рассмотрении центральной стадии окислительного фосфорилирования при гликолизе. Фотосинтез воспользовался этим «доисторическим» окфос-блоком для выполнения ключевой восстановительной стадии — вначале в том виде, в каком он имелся, а затем произошла замена кофер- мента НАД на НАДФ. Воспользовавшись преимуществами высокоэнергетического потенциала, который развивается в резервуарах НАДН и НАДФН, этот процесс заставляет электроны двигаться в обратном направлении через окфос-блок, потребляя при этом АТФ.' Таким образом, из фосфоглицериновой кислоты образуется фосфоглицериновый альдегид с помощью одной пары электронов, полученных от НАДН или НАДФН и за счет свободной энергии гидролиза АТФ.

Все сказанное о биогенезе митохондрий относится и к хлоропластам. Эти частицы также обладают полным генетическим аппаратом. И хотя он богаче, чем аппарат митохондрий, но контролирует синтез только небольшой части всех белков хлоропластов. Как и в митохондриях, аппарат обладает свойствами, присущими бактериям, и, вероятно, также является рудиментом древнего эндосимбионта, в данном случае цианобактерии. Хлоропласты, подобно митохондриям, характеризуются генетической непрерывностью и могут подвергаться мутациям, которые передаются через цитоплазму.
Вместе с тем автономность хлоропластов ограничена так же, как и у митохондрий. Большая часть их компонентов производится цитоплазматическими рибосомами под контролем ядерных генов. Как и в случае с митохондриями, способ, которым эти компоненты проникают сквозь мембраны хлоропластов и занимают в них надлежащее место, не вполне ясен.
Первое микротельце было обнаружено в почке мыши в начале 1950-х гг. одним шведским анатомом, который нашел, что оно имеет на редкость неопределенную форму, а потому даже не смог придумать ему подходящего названия. Вскоре подобные частицы были обнаружены в печени крыс, а позднее и в ряде других клеток растительного и животного происхождения. Несмотря на свою широкую распространенность, эти микротельца встречались только в определенных типах клеток. У млекопитающих их находят преимущественно в печени и почках.
Где бы их не выявляли, микротельца имеют одинаковый внешний вид. Это неровные сферические структуры диаметром 0,5—10 мкм, т. е. несколько меньше митохондрий. Они окружены мембраной и чаще всего наполнены довольно компактным аморфным матриксом. В некоторых клетках этот матрикс содержит включение — плотную кристалловидную сердцевину (ядро), или нуклеоид, с удивительно красивой тонкой структурой. Эти чисто морфологические данные оставляли немало места для воображения; они и в самом деле давали основания для всяко рода фантастических толкований. Когда же биохимические доказательства в конечном итоге направили исследователей по верному пути, правда оказалась еще более удивительной, чем вымысел. Как выяснилось, существует несколько различных типов микротелец, и каждый из них связан с примитивным, если не доисторическим, набором метаболических реакций.
Пероксисомы — самый распространенный вид микротелец. Они получили свое название от перекиси водорода, Н2О2, основного промежуточного продукта, получаемого при их окислительном метаболизме. Перекись водорода образуется в результате деятельности целого семейства ферментов. названных оксидазами типа II. В основном они представлены флавопротеидами,иногда — белками в комплексе с медью, которые используют молекулярный кислород как электронный акцептор и восстанавливают его до Н2О2:Электронные доноры в этих реакциях представлены аминокислотами, жирными производными ацилкофермента А, пуринами и некоторыми продуктами метаболизма углеводов, такими, как молочная кислота. Другими словами, к ним относятся представители всех основных классов питательных веществ.
Перекись водорода, образующаяся в пероксисомах, далее метаболизируется благодаря действию каталазы — зеленого гемо- протеида, который восстанавливает Н2О2 до воды с использованием в качестве электронного донора некоторых небольших по размерам органических молекул (этанол, метанол или муравьиная кислота) и в отсутствие подходящего донора самой перекиси водорода:Последняя реакция называется реакцией дисмутации. В ней одна молекула перекиси водорода восстанавливается, а другая окисляется. Окончательным результатом процесса является распад Н2Ог с выделением кислорода. Каталазу можно увидеть в действии, если слегка смочить ранку перекисью водорода: кислород начнет пениться. Каталаза — один из наиболее быстро действующих ферментов. Она была обнаружена в 1918 г. французским химиком Жаком Тенаром, открывшим Н2О2.
Действуя совместно, пероксисомальные оксидазы и каталазы приводят к тому, что окисление происходит согласно следующему механизму:
Сравните эту дыхательную цепь с той, которая имеется в митохондриях, и вам сразу бросится в глаза различие между безрассудным расточительством и разумной бережливостью. В обоих случаях результат одинаков: происходит окисление всех видов питательных продуктов, сопровождающееся восстановлением кислорода до воды. Но если в митохондриях большая часть свободной энергии сгорания возвращается в виде готовой к использованию АТФ, то в пероксисомах она рассеивается в виде тепла. Этот недостаток компенсируется удивительной простотой конструкции. Такое впечатление, будто пероксисомальный тип дыхания возник задолго до того, как объединились вместе нежные митохондриальные микросферы. Возможно, он представляет собой одну из самых ранних адаптаций живых организмов к кислороду, как мы об этом говорили .

Добро пожаловать в интересный мир молекул и клеток


0eae559e
Разделы сайта
 Рейтинг@Mail.ru
Календарь обновлений
«    Октябрь 2010    »
ПнВтСрЧтПтСбВс
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
Архив новостей
Облако тегов
Популярные новости
Наш опрос